论文标题
伪源性耦合,用于超越信封功能近似之外的孔
Pseudospin-electric coupling for holes beyond the envelope-function approximation
论文作者
论文摘要
在信封功能近似中,忽略了电场产生的带间跃迁。但是,电场可能会导致频段(内部,伪赋)自由度的空间局部($ K $独立)耦合。这种耦合存在于IIII-V半导体(例如GAAS)或IV组半导体(Germanium,Silicon,silicon,...)中的重孔和轻孔(伪 - )旋转状态之间,并具有破裂的反转对称性。在这里,我们计算了第一原理中GAAS中孔的电 - 偶极子(伪旋转)耦合。我们发现了$ 0.5 $ debye的过渡偶极子,这是氢原子$ 1S \ to2p $ transition的大部分。此外,我们得出了该过渡偶极子为三角形量子井中的重孔产生的dresselhaus自旋轨道耦合。对这种伪源性耦合的定量显微镜描述对于理解量子井中的自旋分裂的起源,自旋相干/放松($ T_2^*/T_1 $),旋转电耦合对于腔体 - QED,电动 - QED,电动 - 电动型旋转量和旋转量量量强度很重要。
In the envelope-function approximation, interband transitions produced by electric fields are neglected. However, electric fields may lead to a spatially local ($k$-independent) coupling of band (internal, pseudospin) degrees of freedom. Such a coupling exists between heavy-hole and light-hole (pseudo-)spin states for holes in III-V semiconductors, such as GaAs, or in group IV semiconductors (germanium, silicon, ...) with broken inversion symmetry. Here, we calculate the electric-dipole (pseudospin-electric) coupling for holes in GaAs from first principles. We find a transition dipole of $0.5$ debye, a significant fraction of that for the hydrogen-atom $1s\to2p$ transition. In addition, we derive the Dresselhaus spin-orbit coupling that is generated by this transition dipole for heavy holes in a triangular quantum well. A quantitative microscopic description of this pseudospin-electric coupling may be important for understanding the origin of spin splitting in quantum wells, spin coherence/relaxation ($T_2^*/T_1$) times, spin-electric coupling for cavity-QED, electric-dipole spin resonance, and spin non-conserving tunneling in double quantum dot systems.