论文标题
使用深神经网络对深深的电磁原木进行建模
Modeling extra-deep electromagnetic logs using a deep neural network
论文作者
论文摘要
现代的地理序列在很大程度上取决于对深电磁(EM)测量的实时解释。我们提出了一种构建深神经网络(DNN)模型的方法,该模型训练有素,可以重现一组完整的深度EM日志,该日志由每个记录位置进行22个测量值组成。该模型是在最多七个具有不同电阻率值的1D层环境中训练的。工具供应商提供的商业模拟器用于生成培训数据集。数据集大小受到限制,因为供应商提供的模拟器已优化用于顺序执行。因此,我们设计了一个培训数据集,该数据集涵盖了远期模型支持的地质规则和地理序列细节。我们使用此数据集生产基于DNN的EM模拟器,而无需访问有关EM工具配置或原始模拟器源代码的专有信息。尽管采用了相对较小的训练集尺寸,但最终的DNN向前模型对于所考虑的示例还是非常准确的:多层合成案例和Goliat Field已发表的历史操作的一部分。观察到的平均评估时间为每个记录位置0.15毫秒的平均评估时间,也适合将来用作GeoSteering工作流程中渴望评估统计的一部分和/或Monte-Carlo反转算法的一部分。
Modern geosteering is heavily dependent on real-time interpretation of deep electromagnetic (EM) measurements. We present a methodology to construct a deep neural network (DNN) model trained to reproduce a full set of extra-deep EM logs consisting of 22 measurements per logging position. The model is trained in a 1D layered environment consisting of up to seven layers with different resistivity values. A commercial simulator provided by a tool vendor is used to generate a training dataset. The dataset size is limited because the simulator provided by the vendor is optimized for sequential execution. Therefore, we design a training dataset that embraces the geological rules and geosteering specifics supported by the forward model. We use this dataset to produce an EM simulator based on a DNN without access to the proprietary information about the EM tool configuration or the original simulator source code. Despite employing a relatively small training set size, the resulting DNN forward model is quite accurate for the considered examples: a multi-layer synthetic case and a section of a published historical operation from the Goliat Field. The observed average evaluation time of 0.15 ms per logging position makes it also suitable for future use as part of evaluation-hungry statistical and/or Monte-Carlo inversion algorithms within geosteering workflows.