论文标题

肖像阴影操纵

Portrait Shadow Manipulation

论文作者

Zhang, Xuaner Cecilia, Barron, Jonathan T., Tsai, Yun-Ta, Pandey, Rohit, Zhang, Xiuming, Ng, Ren, Jacobs, David E.

论文摘要

由于环境中的次优条件,随意拍摄的肖像照片通常会遭受令人难以置信的照明和阴影。美学品质,例如阴影的位置和柔软度以及面部明亮和黑暗部分之间的照明比率经常取决于环境的限制,而不是摄影师的限制。专业人士通过添加诸如刮擦,弹跳卡和闪光等轻型塑形工具来解决这个问题。在本文中,我们提出了一种计算方法,可以使随意摄影师有一些控制,从而使光线不佳的肖像以一种现实且易于控制的方式在捕获后恢复。我们的方法依赖于一对神经网络 - 一个是为了消除外部物体施放的外国阴影,而另一种是为了软化受试者的特征施放的面部阴影,并添加一个合成的填充灯以提高照明比率。为了训练我们的第一个网络,我们构建了一个现实世界肖像的数据集,其中综合外国阴影被渲染到脸上,我们表明我们的网络学会了消除那些不需要的阴影。为了训练我们的第二个网络,我们使用人类受试者的光阶段扫描数据集构建输入/输出成对的输入图像,该图像通过小光源严格照明,并可以多样化每个脸部的输出图像。我们提出了一种明确编码面部对称性的方法,并表明我们的数据集和训练过程使该模型能够推广到野外拍摄的图像。这些网络共同实现了现实世界中的阴影和灯光的现实和美观的增强

Casually-taken portrait photographs often suffer from unflattering lighting and shadowing because of suboptimal conditions in the environment. Aesthetic qualities such as the position and softness of shadows and the lighting ratio between the bright and dark parts of the face are frequently determined by the constraints of the environment rather than by the photographer. Professionals address this issue by adding light shaping tools such as scrims, bounce cards, and flashes. In this paper, we present a computational approach that gives casual photographers some of this control, thereby allowing poorly-lit portraits to be relit post-capture in a realistic and easily-controllable way. Our approach relies on a pair of neural networks---one to remove foreign shadows cast by external objects, and another to soften facial shadows cast by the features of the subject and to add a synthetic fill light to improve the lighting ratio. To train our first network we construct a dataset of real-world portraits wherein synthetic foreign shadows are rendered onto the face, and we show that our network learns to remove those unwanted shadows. To train our second network we use a dataset of Light Stage scans of human subjects to construct input/output pairs of input images harshly lit by a small light source, and variably softened and fill-lit output images of each face. We propose a way to explicitly encode facial symmetry and show that our dataset and training procedure enable the model to generalize to images taken in the wild. Together, these networks enable the realistic and aesthetically pleasing enhancement of shadows and lights in real-world portrait images

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源