论文标题

一个基于变压器的嵌入模型,用于个性化产品搜索

A Transformer-based Embedding Model for Personalized Product Search

论文作者

Bi, Keping, Ai, Qingyao, Croft, W. Bruce

论文摘要

产品搜索是人们在电子商务平台上浏览和购买商品的重要方法。尽管客户倾向于根据自己的个人品味和偏好做出选择,但对商业产品搜索日志的分析表明,个性化并不总是提高产品搜索质量。但是,大多数现有的产品搜索技术在搜索课程中进行了未分化的个性化。他们要么使用固定系数来控制个性化的影响,要么通过注意机制始终生效个性化。唯一值得注意的例外是最近提出的零注意模型(ZAM),可以通过允许查询参加零向量来适应个性化的效果。但是,在ZAM中,个性化最多可以与查询和物品的表示形式同样重要,而不管用户的历史购买中的物品如何,整个集合中都有静态的作用。我们意识到这些局限性,我们为个性化产品搜索提出了一个基于变压器的嵌入模型(TEM),该模型可以通过使用变压器体系结构编码查询和用户购买历史记录的顺序来动态控制个性化的影响。在必要时,个性化可能会产生主要的影响,并且在计算注意力重量时可以考虑项目之间的相互作用。实验结果表明,TEM胜过最先进的个性化产品检索模型。

Product search is an important way for people to browse and purchase items on E-commerce platforms. While customers tend to make choices based on their personal tastes and preferences, analysis of commercial product search logs has shown that personalization does not always improve product search quality. Most existing product search techniques, however, conduct undifferentiated personalization across search sessions. They either use a fixed coefficient to control the influence of personalization or let personalization take effect all the time with an attention mechanism. The only notable exception is the recently proposed zero-attention model (ZAM) that can adaptively adjust the effect of personalization by allowing the query to attend to a zero vector. Nonetheless, in ZAM, personalization can act at most as equally important as the query and the representations of items are static across the collection regardless of the items co-occurring in the user's historical purchases. Aware of these limitations, we propose a transformer-based embedding model (TEM) for personalized product search, which could dynamically control the influence of personalization by encoding the sequence of query and user's purchase history with a transformer architecture. Personalization could have a dominant impact when necessary and interactions between items can be taken into consideration when computing attention weights. Experimental results show that TEM outperforms state-of-the-art personalization product retrieval models significantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源