论文标题

深度学习,以人类感知为导向的伪模拟视频传播

Human-Perception-Oriented Pseudo Analog Video Transmissions with Deep Learning

论文作者

Tang, Xiao-Wei, Huang, Xin-Lin, Hu, Fei, Shi, Qingjiang

论文摘要

最近,伪模拟传播由于能够减轻视频多播场景中的悬崖效应的能力而引起了人们的注意。现有的伪模拟系统在最小平方误差标准下非常优化,而无需考虑感知视频质量。在本文中,我们提出了一个名为ROIC-Cast的基于人类感知的伪模拟视频传输系统,该系统旨在智能提高利益区域(ROI)零件的传输质量。首先,采用经典的基于深度学习的显着性检测算法将连续的视频序列分解为ROI和非ROI块。其次,使用有效的压缩方法来减少ROI提取模块生成的侧面信息的数据量。然后,将功率分配方案作为凸问题配制,并且ROI和非ROI块的最佳传输功率以封闭形式得出。最后,进行模拟是通过与一些现有系统(例如KMV-Cast,Softcast和DAC-RAN)进行比较来验证所提出的系统。与其他系统相比,提出的ROIC铸造可以达到ROI的4.1db峰信号效率比,分别为-5dB,0dB,5dB和10dB,可以实现ROI的ROI的增长率。这种显着的性能改善是由于自动ROI提取,高效率数据压缩以及自适应功率分配。

Recently, pseudo analog transmission has gained increasing attentions due to its ability to alleviate the cliff effect in video multicast scenarios. The existing pseudo analog systems are sorely optimized under the minimum mean squared error criterion without taking the perceptual video quality into consideration. In this paper, we propose a human-perception-based pseudo analog video transmission system named ROIC-Cast, which aims to intelligently enhance the transmission quality of the region-of-interest (ROI) parts. Firstly, the classic deep learning based saliency detection algorithm is adopted to decompose the continuous video sequences into ROI and non-ROI blocks. Secondly, an effective compression method is used to reduce the data amount of side information generated by the ROI extraction module. Then, the power allocation scheme is formulated as a convex problem, and the optimal transmission power for both ROI and non-ROI blocks is derived in a closed form. Finally, the simulations are conducted to validate the proposed system by comparing with a few of existing systems, e.g., KMV-Cast, SoftCast, and DAC-RAN. The proposed ROIC-Cast can achieve over 4.1dB peak signal- to-noise ratio gains of ROI compared with other systems, given the channel signal-to-noise ratio as -5dB, 0dB, 5dB, and 10dB, respectively. This significant performance improvement is due to the automatic ROI extraction, high-efficiency data compression as well as adaptive power allocation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源