论文标题

限制进化算法中的实价基因型

On Restricting Real-Valued Genotypes in Evolutionary Algorithms

论文作者

Nordmoen, Jørgen, Nygaard, Tønnes Frostad, Samuelsen, Eivind, Glette, Kyrre

论文摘要

实价的基因型以及变异算子,突变和跨界型构成了进化算法的一些基本构建基块。从人工神经网络中的权重到机器人控制系统中的参数,实现的基因型用于广泛的环境中。在大多数使用实值基因组中共享的是需要将单个参数的范围限制为允许界限。在本文中,我们将说明限制实价基因组参数的挑战,并分析适当限制这些值的最有前途的方法。我们利用经验和基准示例来证明所提出的方法的实用性,并通过文献综述,展示了本文的见解如何影响该领域的其他研究。所提出的方法需要从进化算法实践者中进行最少的干预,并且在重复应用变异操作员的情况下表现得很好,从而导致更好的理论属性以及众所周知的基准分析的显着差异。

Real-valued genotypes together with the variation operators, mutation and crossover, constitute some of the fundamental building blocks of Evolutionary Algorithms. Real-valued genotypes are utilized in a broad range of contexts, from weights in Artificial Neural Networks to parameters in robot control systems. Shared between most uses of real-valued genomes is the need for limiting the range of individual parameters to allowable bounds. In this paper we will illustrate the challenge of limiting the parameters of real-valued genomes and analyse the most promising method to properly limit these values. We utilize both empirical as well as benchmark examples to demonstrate the utility of the proposed method and through a literature review show how the insight of this paper could impact other research within the field. The proposed method requires minimal intervention from Evolutionary Algorithm practitioners and behaves well under repeated application of variation operators, leading to better theoretical properties as well as significant differences in well-known benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源