论文标题
随机年轻微分延迟方程的回调吸引子
Pullback attractors for stochastic Young differential delay equations
论文作者
论文摘要
我们研究了系数函数的Lipschitz连续性的常规假设下的随机年轻微分延迟方程的渐近动力学。我们的主要结果表明,如果漂移项中有一个线性部分,没有延迟因子并且具有负实际零件的特征值,则生成的随机动力学系统具有随机回调吸引子,前提是其余部分的Lipschitz系数很小。
We study the asymptotic dynamics of stochastic Young differential delay equations under the regular assumptions on Lipschitz continuity of the coefficient functions. Our main results show that, if there is a linear part in the drift term which has no delay factor and has eigenvalues of negative real parts, then the generated random dynamical system possesses a random pullback attractor provided that the Lipschitz coefficients of the remaining parts are small.