论文标题
空间异质性可以导致19个时机和严重程度的局部变化
Spatial Heterogeneity Can Lead to Substantial Local Variations in COVID-19 Timing and Severity
论文作者
论文摘要
COVID-19的标准流行病学模型在局部尺度上采用隔室模型(SIR)模型的变体,隐含地假设在空间上局部混合。在这里,我们研究了基于人际网络的已知空间特征采用更详细的地理详细扩散模型的效果,尤其是在与距离相互作用的可能性中,对疾病扩散的相互作用可能性下降了长尾但单调的下降。基于对19个美国城市中无限制的COVID-19扩散的模拟,我们得出的结论是,即使在较大尺度上的总体行为反映了经典的Sir样模式,人口分布的异质性也会对局部大流行时机和严重程度产生很大的影响。观察到的影响包括相对于骨料感染曲线的严重局部暴发,滞后时间长,以及众多疾病轨迹与邻近地区较差的地区的存在。一个简单的医院需求流域模型说明了对医疗保健利用的潜在影响,即使没有疏远干预措施,影响时间和末端的巨大差异也存在。同样,分析与病态或死者的其他人的社会接触分析在现场表现出流行病的方式有很大差异,可能会影响风险评估并遵守缓解措施。这些结果表明,即使在城市的规模上,空间网络结构也有可能产生高度不均匀的扩散行为,并提出了在设计模型以告知医疗保健计划,预测社区成果或确定潜在危险度时结合这种结构的重要性。
Standard epidemiological models for COVID-19 employ variants of compartment (SIR) models at local scales, implicitly assuming spatially uniform local mixing. Here, we examine the effect of employing more geographically detailed diffusion models based on known spatial features of interpersonal networks, most particularly the presence of a long-tailed but monotone decline in the probability of interaction with distance, on disease diffusion. Based on simulations of unrestricted COVID-19 diffusion in 19 U.S cities, we conclude that heterogeneity in population distribution can have large impacts on local pandemic timing and severity, even when aggregate behavior at larger scales mirrors a classic SIR-like pattern. Impacts observed include severe local outbreaks with long lag time relative to the aggregate infection curve, and the presence of numerous areas whose disease trajectories correlate poorly with those of neighboring areas. A simple catchment model for hospital demand illustrates potential implications for health care utilization, with substantial disparities in the timing and extremity of impacts even without distancing interventions. Likewise, analysis of social exposure to others who are morbid or deceased shows considerable variation in how the epidemic can appear to individuals on the ground, potentially affecting risk assessment and compliance with mitigation measures. These results demonstrate the potential for spatial network structure to generate highly non-uniform diffusion behavior even at the scale of cities, and suggest the importance of incorporating such structure when designing models to inform healthcare planning, predict community outcomes, or identify potential disparities.