论文标题
在理性动机同义类别上
On the rational motivic homotopy category
论文作者
论文摘要
我们研究了一般基础方案的理性动机稳定同型类别的结构。我们的第一类结果涉及六项操作:我们证明了绝对纯度,可构造对象的稳定性以及SH_Q的Grothendieck-verdier二元性。接下来,我们证明SH_Q是面向SL-SL-SL-Str-timentience;我们将SH_Q与理性Milnor-Witt动机的类别进行了比较;我们将合理的双变量A^1理论与Chow-Witt组联系起来。这些结果来自SH [1/2]的减去部分的类似语句。
We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck-Verdier duality for SH_Q. Next, we prove that SH_Q is canonically SL-oriented; we compare SH_Q with the category of rational Milnor-Witt motives; and we relate the rational bivariant A^1-theory to Chow-Witt groups. These results are derived from analogous statements for the minus part of SH[1/2].