论文标题

在理性动机同义类别上

On the rational motivic homotopy category

论文作者

Déglise, Frédéric, Fasel, Jean, Khan, Adeel A., Jin, Fangzhou

论文摘要

我们研究了一般基础方案的理性动机稳定同型类别的结构。我们的第一类结果涉及六项操作:我们证明了绝对纯度,可构造对象的稳定性以及SH_Q的Grothendieck-verdier二元性。接下来,我们证明SH_Q是面向SL-SL-SL-Str-timentience;我们将SH_Q与理性Milnor-Witt动机的类别进行了比较;我们将合理的双变量A^1理论与Chow-Witt组联系起来。这些结果来自SH [1/2]的减去部分的类似语句。

We study the structure of the rational motivic stable homotopy category over general base schemes. Our first class of results concerns the six operations: we prove absolute purity, stability of constructible objects, and Grothendieck-Verdier duality for SH_Q. Next, we prove that SH_Q is canonically SL-oriented; we compare SH_Q with the category of rational Milnor-Witt motives; and we relate the rational bivariant A^1-theory to Chow-Witt groups. These results are derived from analogous statements for the minus part of SH[1/2].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源