论文标题
频段映射和频段结构之间的机器学习路线
A machine learning route between band mapping and band structure
论文作者
论文摘要
电子带结构(BS)和晶体结构是固态材料的两个互补标识符。尽管方便的仪器和重建算法使大型,经验,晶体结构数据库成为可能,但目前从光发射频段映射数据中提取准粒子分散(与BS密切相关),目前受到可用的计算方法的限制。为了应对光发射数据的不断增长和规模,我们开发了一条管道,包括概率机器学习以及相关的数据处理,对带结构重建的相关数据处理,优化和评估方法,利用理论计算。管道重建了半导体的所有14个价带,并在基准和其他材料数据集上显示出卓越的性能。重建揭示了以前无法访问的全球和本地尺度上的动量空间结构信息,同时实现了与材料科学数据库集成的道路。我们的方法说明了在多维数据中结合机器学习和域知识以进行可扩展特征提取的潜力。
Electronic band structure (BS) and crystal structure are the two complementary identifiers of solid state materials. While convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting quasiparticle dispersion (closely related to BS) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.