论文标题

在概念漂移存在下的监督学习:建模框架

Supervised Learning in the Presence of Concept Drift: A modelling framework

论文作者

Straat, Michiel, Abadi, Fthi, Kan, Zhuoyun, Göpfert, Christina, Hammer, Barbara, Biehl, Michael

论文摘要

我们提出了一个建模框架,用于调查非平稳环境中的监督学习。具体而言,我们对学习系统的两种示例类型进行建模:基于原型的学习矢量量化(LVQ),用于分类和浅层,分层神经网络,用于回归任务。我们研究所谓的学生教师场景,其中从高维,标记的数据流中培训系统。在进行训练时,由于漂移过程,目标任务的属性被认为是非平稳的。研究了不同类型的概念漂移,这仅影响示例输入的密度,目标规则本身或两者兼而有之。通过应用统计物理学的方法,我们为非平稳环境中训练动力学的数学分析开发了建模框架。 我们的结果表明,标准LVQ算法在一定程度上已经适用于非平稳环境中的培训。但是,将重量衰减作为遗忘的明确机制的应用并不能改善所考虑的漂移过程中的性能。此外,我们研究了具有乙状结肠激活功能的基于层次神经网络的梯度训练,并与使用整流线性单元(RELU)进行比较。我们的发现表明,两种类型的激活函数之间对概念漂移的敏感性和体重衰减的有效性有很大不同。

We present a modelling framework for the investigation of supervised learning in non-stationary environments. Specifically, we model two example types of learning systems: prototype-based Learning Vector Quantization (LVQ) for classification and shallow, layered neural networks for regression tasks. We investigate so-called student teacher scenarios in which the systems are trained from a stream of high-dimensional, labeled data. Properties of the target task are considered to be non-stationary due to drift processes while the training is performed. Different types of concept drift are studied, which affect the density of example inputs only, the target rule itself, or both. By applying methods from statistical physics, we develop a modelling framework for the mathematical analysis of the training dynamics in non-stationary environments. Our results show that standard LVQ algorithms are already suitable for the training in non-stationary environments to a certain extent. However, the application of weight decay as an explicit mechanism of forgetting does not improve the performance under the considered drift processes. Furthermore, we investigate gradient-based training of layered neural networks with sigmoidal activation functions and compare with the use of rectified linear units (ReLU). Our findings show that the sensitivity to concept drift and the effectiveness of weight decay differs significantly between the two types of activation function.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源