论文标题

宇宙学复杂性的兴起:生长和混乱的饱和

The Rise of Cosmological Complexity: Saturation of Growth and Chaos

论文作者

Bhattacharyya, Arpan, Das, Saurya, Haque, S. Shajidul, Underwood, Bret

论文摘要

我们使用挤压真空状态的语言计算了具有固定状态$ W $方程的FLRW宇宙学背景上标态曲率扰动的电路复杂性。正在加速,扩展或减速和收缩的背景表现出与混乱行为一致的特征,包括线性增长的复杂性。值得注意的是,我们发现了扩展背景和收缩背景的复杂性的增长,$λ\ leq \ sqrt {2} \ | h | $,类似于文献中独立提出的其他界限。该界限对于扩展背景的状态方程式更为负,而对$ w = -5/3 $的方程式饱和,并且具有大于$ w = 1 $的状态方程的收缩背景。对于保留无效能量条件的不断扩展的背景,DE Sitter空间具有最大的复杂性增长率(被确定为Lyapunov指数),我们发现与其他估计相似的争夺时间与订单相似。

We compute the circuit complexity of scalar curvature perturbations on FLRW cosmological backgrounds with fixed equation of state $w$ using the language of squeezed vacuum states. Backgrounds that are accelerating and expanding, or decelerating and contracting, exhibit features consistent with chaotic behavior, including linearly growing complexity. Remarkably, we uncover a bound on the growth of complexity for both expanding and contracting backgrounds $λ\leq \sqrt{2} \ |H|$, similar to other bounds proposed independently in the literature. The bound is saturated for expanding backgrounds with an equation of state more negative than $w = -5/3$, and for contracting backgrounds with an equation of state larger than $w = 1$. For expanding backgrounds that preserve the null energy condition, de Sitter space has the largest rate of growth of complexity (identified as the Lyapunov exponent), and we find a scrambling time that is similar to other estimates up to order one factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源