论文标题

高级访问卷积神经网络

Premium Access to Convolutional Neural Networks

论文作者

Bringer, Julien, Chabanne, Hervé, Guiga, Linda

论文摘要

如今,神经网络(NNS)用于我们的所有日常任务;例如,在手机中。我们在这里想展示如何限制他们对特权用户的访问。我们的解决方案依赖于降级的实现,该实现可以通过PIN来纠正。我们解释了如何在NN中选择一些参数,以最大程度地提高高级和退化模式之间精度的差距。我们报告了有关对深度NN的建议实施的实验,以证明其实用性。

Neural Networks (NNs) are today used for all our daily tasks; for instance, in mobile phones. We here want to show how to restrict their access to privileged users. Our solution relies on a degraded implementation which can be corrected thanks to a PIN. We explain how to select a few parameters in an NN so as to maximize the gap in the accuracy between the premium and the degraded modes. We report experiments on an implementation of our proposal on a deep NN to prove its practicability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源