论文标题
在二维移动抽样上
On 2-dimensional mobile sampling
论文作者
论文摘要
为几个平面曲线的家族提供了必要和足够的条件,以形成一组稳定的采样,用于bernstein Space $ \ MATHCAL {B}_Ω$上的凸套装$ω\ subset \ subset \ mathbb {r}^2 $。这些条件“基本上”描述了这些家族的移动采样属性,用于paley-wiener空间$ \ MATHCAL {pW}^p_Ω,1 \ leq p <\ infty $。
Necessary and sufficient conditions are presented for several families of planar curves to form a set of stable sampling for the Bernstein space $\mathcal{B}_Ω$ over a convex set $Ω\subset \mathbb{R}^2$. These conditions "essentially" describe the mobile sampling property of these families for the Paley-Wiener spaces $\mathcal{PW}^p_Ω,1\leq p<\infty$.