论文标题
象征性预性:从扭曲的视频中发现物理定律
Symbolic Pregression: Discovering Physical Laws from Distorted Video
论文作者
论文摘要
我们提出了一种无监督学习的方法,以原始和未标记的视频中的对象方程式学习。我们首先训练一个自动编码器,该自动编码器将每个视频框架映射到一个低维的潜在空间中,在该空间中,运动定律尽可能简单,通过最大程度地减少非线性,加速度和预测错误的结合。然后,使用帕累托最佳符号回归发现描述运动的微分方程。我们发现,即使视频被广义镜头扭曲,我们的预回归(“预性”)步骤也能够重新发现未标记的移动对象的笛卡尔坐标。使用多维结理论的直觉,我们发现,首先添加额外的潜在空间维度来促进预性步骤,以避免在训练过程中避免拓扑问题,然后通过主成分分析去除这些额外的维度。
We present a method for unsupervised learning of equations of motion for objects in raw and optionally distorted unlabeled video. We first train an autoencoder that maps each video frame into a low-dimensional latent space where the laws of motion are as simple as possible, by minimizing a combination of non-linearity, acceleration and prediction error. Differential equations describing the motion are then discovered using Pareto-optimal symbolic regression. We find that our pre-regression ("pregression") step is able to rediscover Cartesian coordinates of unlabeled moving objects even when the video is distorted by a generalized lens. Using intuition from multidimensional knot-theory, we find that the pregression step is facilitated by first adding extra latent space dimensions to avoid topological problems during training and then removing these extra dimensions via principal component analysis.