论文标题

象征性预性:从扭曲的视频中发现物理定律

Symbolic Pregression: Discovering Physical Laws from Distorted Video

论文作者

Udrescu, Silviu-Marian, Tegmark, Max

论文摘要

我们提出了一种无监督学习的方法,以原始和未标记的视频中的对象方程式学习。我们首先训练一个自动编码器,该自动编码器将每个视频框架映射到一个低维的潜在空间中,在该空间中,运动定律尽可能简单,通过最大程度地减少非线性,加速度和预测错误的结合。然后,使用帕累托最佳符号回归发现描述运动的微分方程。我们发现,即使视频被广义镜头扭曲,我们的预回归(“预性”)步骤也能够重新发现未标记的移动对象的笛卡尔坐标。使用多维结理论的直觉,我们发现,首先添加额外的潜在空间维度来促进预性步骤,以避免在训练过程中避免拓扑问题,然后通过主成分分析去除这些额外的维度。

We present a method for unsupervised learning of equations of motion for objects in raw and optionally distorted unlabeled video. We first train an autoencoder that maps each video frame into a low-dimensional latent space where the laws of motion are as simple as possible, by minimizing a combination of non-linearity, acceleration and prediction error. Differential equations describing the motion are then discovered using Pareto-optimal symbolic regression. We find that our pre-regression ("pregression") step is able to rediscover Cartesian coordinates of unlabeled moving objects even when the video is distorted by a generalized lens. Using intuition from multidimensional knot-theory, we find that the pregression step is facilitated by first adding extra latent space dimensions to avoid topological problems during training and then removing these extra dimensions via principal component analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源