论文标题

广义SU(1,1)代数和Pöschl-Teller电位的非线性相干状态的构建

Generalized su(1,1) algebra and the construction of nonlinear coherent states for Pöschl-Teller potential

论文作者

Belfakir, Abdessamad, Hassouni, Yassine

论文摘要

我们介绍了SU(1,1)代数的概括结构,该结构取决于代数的一个发电机F(H)的函数。遵循与广义的海森伯格代数(GHA)和广义su(2)相同的思想,我们表明,对称性存在于代数的一个发电机的特征值序列中。然后,我们构建了与Pöschl-Teller电位中粒子的广义SU(1,1)代数相关的Barut-Girardello相干状态。此外,我们比较了构造相干状态与GHA相干状态的不确定性关系的时间演变。广义SU(1,1)相干状态非常局部。

We introduce a generalization structure of the su(1,1) algebra which depends on a function of one generator of the algebra, f(H). Following the same ideas developed to the generalized Heisenberg algebra (GHA) and to the generalized su(2), we show that a symmetry is present in the sequence of eigenvalues of one generator of the algebra. Then, we construct the Barut-Girardello coherent states associated with the generalized su(1,1) algebra for a particle in a Pöschl-Teller potential. Furthermore, we compare the time evolution of the uncertainty relation of the constructed coherent states with that of GHA coherent states. The generalized su(1,1) coherent states are very localized.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源