论文标题
运算符系统的强烈峰值表示和压缩
Strongly peaking representations and compressions of operator systems
论文作者
论文摘要
我们使用Arveson强烈峰值表示的概念来概括自由谱图的独特定理和矩阵凸形集,这些凸式集合可以允许最小的呈现。完全压缩的可分离运算符系统必然会生成C*-envelope,因此身份是强烈峰值表示的直接总和。特别是,可分离运算符系统的完全压缩的呈现是独一无二的。在各种其他假设下,最小的条件足以确定可分离的操作员系统。
We use Arveson's notion of strongly peaking representation to generalize uniqueness theorems for free spectrahedra and matrix convex sets which admit minimal presentations. A fully compressed separable operator system necessarily generates the C*-envelope and is such that the identity is the direct sum of strongly peaking representations. In particular, a fully compressed presentation of a separable operator system is unique up to unitary equivalence. Under various additional assumptions, minimality conditions are sufficient to determine a separable operator system uniquely.