论文标题

对树宽的影响在冻结动力学的计算复杂性中的影响

On the impact of treewidth in the computational complexity of freezing dynamics

论文作者

Goles, Eric, Montealegre, Pedro, Ríos-Wilson, Martín, Theyssier, Guillaume

论文摘要

自动机网络是一个实体网络,每个网络都有有限集的状态,并根据本地更新规则进行演变,该规则仅取决于其网络图中的邻居。如果在任何轨道上都不会有任何节点的状态演变在任何轨道上都不折叠的状态,则它是冻结的。它们通常用于模拟流行病的传播,扩散现象(如bootstrap渗透或Cristal生长)。在本文中,我们确定了基础图的树宽和最大程度是关键参数,它影响有限冻结自动机网络的整体计算复杂性。首先,我们定义了一个通用模型检查形式主义,该模型捕获了许多经典的决策问题:预测,努力,前身,异步可及性。然后,一方面,我们提出了一种有效的并行算法,该算法解决了NC中的一般模型检查问题,以限制了界限和有界的树宽。另一方面,我们表明,当以多项式生长的树宽为单位的绘图家族时,这些问题在各自的类别中很难。为了预测,前身和异步可达性,我们通过固定的固定型更新规则建立了硬度结果,该规则在此类家庭的任何输入图上都很困难。

An automata network is a network of entities, each holding a state from a finite set and evolving according to a local update rule which depends only on its neighbors in the network's graph. It is freezing if there is an order on states such that the state evolution of any node is non-decreasing in any orbit. They are commonly used to model epidemic propagation, diffusion phenomena like bootstrap percolation or cristal growth. In this paper we establish how treewidth and maximum degree of the underlying graph are key parameters which influence the overall computational complexity of finite freezing automata networks. First, we define a general model checking formalism that captures many classical decision problems: prediction, nilpotency, predecessor, asynchronous reachability. Then, on one hand, we present an efficient parallel algorithm that solves the general model checking problem in NC for any graph with bounded degree and bounded treewidth. On the other hand, we show that these problems are hard in their respective classes when restricted to families of graph with polynomially growing treewidth. For prediction, predecessor and asynchronous reachability, we establish the hardness result with a fixed set-defiend update rule that is universally hard on any input graph of such families.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源