论文标题
更新用于分布式存储的带宽
Update Bandwidth for Distributed Storage
论文作者
论文摘要
在本文中,我们考虑分布式存储系统〜(DSSS)中的更新带宽。更新带宽测量DSSS中更新过程的传输效率,定义为当更新节点中存储的数据符号时,网络中传输的数据符号总量。本文包含以下贡献。首先,我们建立了不规则阵列代码可实现的最小更新带宽的封闭式表达。其次,在定义了一类不规则的数组代码(称为最小更新带宽〜(MUB)代码)之后,该代码获得了不规则阵列代码的最小更新带宽,我们确定MUB代码可实现的最小代码冗余。第三,可以识别出不规则阵列代码的最小代码冗余和最小的MUB代码代码冗余的代码参数,这使我们能够将MR-MUB代码定义为一类不规则的数组代码,这些代码同时实现了最小代码冗余和最小更新bandwidth。第四,我们介绍了MR-MUB代码和MUB代码的明确代码构造,并具有最小的代码冗余。第五,我们建立了MR-MUB代码的更新复杂性的下限,可以用来证明MR-MUB代码可能无法实现不规则阵列代码的最小更新复杂性。最后,我们构建了一类$(n = k + 2,k)$垂直最大距离可分离(MDS)阵列代码,该代码可以实现所有最小代码冗余,最小更新带宽以及不规则阵列代码的最佳维修带宽。
In this paper, we consider the update bandwidth in distributed storage systems~(DSSs). The update bandwidth, which measures the transmission efficiency of the update process in DSSs, is defined as the total amount of data symbols transferred in the network when the data symbols stored in a node are updated. This paper contains the following contributions. First, we establish the closed-form expression of the minimum update bandwidth attainable by irregular array codes. Second, after defining a class of irregular array codes, called Minimum Update Bandwidth~(MUB) codes, which achieve the minimum update bandwidth of irregular array codes, we determine the smallest code redundancy attainable by MUB codes. Third, the code parameters, with which the minimum code redundancy of irregular array codes and the smallest code redundancy of MUB codes can be equal, are identified, which allows us to define MR-MUB codes as a class of irregular array codes that simultaneously achieve the minimum code redundancy and the minimum update bandwidth. Fourth, we introduce explicit code constructions of MR-MUB codes and MUB codes with the smallest code redundancy. Fifth, we establish a lower bound of the update complexity of MR-MUB codes, which can be used to prove that the minimum update complexity of irregular array codes may not be achieved by MR-MUB codes. Last, we construct a class of $(n = k + 2, k)$ vertical maximum-distance separable (MDS) array codes that can achieve all of the minimum code redundancy, the minimum update bandwidth and the optimal repair bandwidth of irregular array codes.