论文标题
游泳Euglena响应与行为改变的限制,有效地爬行
Swimming Euglena respond to confinement with a behavioural change enabling effective crawling
论文作者
论文摘要
一些尤格莱尼(Euglenids)是一个水生单细胞生物的家族,可以形成高度协调一致的大振荡脊髓变形。几个世纪以来,这种非凡的行为一直闻名。然而,它的功能仍然引起争议,甚至被视为无动的祖先遗迹。在这里,通过在受控拥挤和几何形状的环境中检查游泳Euglena gracilis,我们表明这种行为是由限制触发的。在这些条件下,它允许细胞从不可能的鞭毛游泳转变为一种新的快速爬行模式,该模式可以处理极端的几何限制,并将摩擦和液压抗性转变为推进力。为了了解单个细胞如何控制这种适应性和鲁棒的运动模式,我们开发了由活性条纹细胞包膜组成的Euglena细胞运动设备的计算模型。我们的建模表明,步态适应性不需要特定的机械敏感反馈,而可以通过机械自我调节的弹性和扩展运动系统来解释。因此,我们的研究确定了运动功能的运动原理和可适应性蠕动的Euglena细胞变形的工作原理。
Some euglenids, a family of aquatic unicellular organisms, can develop highly concerted, large-amplitude peristaltic body deformations. This remarkable behaviour has been known for centuries. Yet, its function remains controversial, and is even viewed as a functionless ancestral vestige. Here, by examining swimming Euglena gracilis in environments of controlled crowding and geometry, we show that this behaviour is triggered by confinement. Under these conditions, it allows cells to switch from unviable flagellar swimming to a new and highly robust mode of fast crawling, which can deal with extreme geometric confinement and turn both frictional and hydraulic resistance into propulsive forces. To understand how a single cell can control such an adaptable and robust mode of locomotion, we developed a computational model of the motile apparatus of Euglena cells consisting of an active striated cell envelope. Our modelling shows that gait adaptability does not require specific mechanosensitive feedback but instead can be explained by the mechanical self-regulation of an elastic and extended motor system. Our study thus identifies a locomotory function and the operating principles of the adaptable peristaltic body deformation of Euglena cells.