论文标题

海森堡集团的谐波振荡器

The Harmonic Oscillator on the Heisenberg Group

论文作者

Rottensteiner, David, Ruzhansky, Michael

论文摘要

在本说明中,我们提出了Heisenberg Group $ \ Mathbf {H} _n $的谐波振荡器的概念$ \ mathbf {h} _n $上的sub-laplacian,本质上是纯粹具有离散频谱的自我偶会,其特征向量应该是光滑的函数,并形成$ l^2(\ mathbf {h} _n)$的正顺序基础。这种方法导致在$ \ mathbf {h} _n $上的差分运算符,该操作员由(分层)dynin-folland lie代数确定。我们为操作员提供明确的表达以及其特征值的渐近估计。

In this note we present a notion of harmonic oscillator on the Heisenberg group $\mathbf{H}_n$ which forms the natural analogue of the harmonic oscillator on $\mathbb{R}^n$ under a few reasonable assumptions: the harmonic oscillator on $\mathbf{H}_n$ should be a negative sum of squares of operators related to the sub-Laplacian on $\mathbf{H}_n$, essentially self-adjoint with purely discrete spectrum, and its eigenvectors should be smooth functions and form an orthonormal basis of $L^2(\mathbf{H}_n)$. This approach leads to a differential operator on $\mathbf{H}_n$ which is determined by the (stratified) Dynin-Folland Lie algebra. We provide an explicit expression for the operator as well as an asymptotic estimate for its eigenvalues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源