论文标题

对黑子周期25的无模型,基于数据的预测

A model-free, data-based forecast for sunspot cycle 25

论文作者

Espuña-Fontcuberta, Aleix, Chatterjee, Saikat, Mitra, Dhrubaditya, Nandy, Dibyendu

论文摘要

太阳的动态活性受其表面上观察到的强烈磁化区域的循环(在其表面上观察到的强烈磁化区域)的控制 - 调节我们的太阳系空间环境创造了空间天气。严重的太空天气会导致卫星操作,电信,电力电网和极性路线上的空气人流中断。然而,预测黑子的周期仍然是一个具有挑战性的问题。我们使用储层计算(一种基于模型,神经 - 网络的机器学习技术)来预测即将到来的太阳周期,太阳斑点周期25。标准算法预测,太阳周期25将持续十年,Maxima将在2024年中出现在2024年,并将在2024年以及最大的Sunspots($ pmsspots)($ pp pm11)($ cpm 115)。我们还开发了标准算法的一种新变化,该算法的持续时间和峰值定时的预测与标准算法的预测相匹配,但在标准储层计算算法的上限内,其峰值振幅预测为124($ \ pm2 $)。我们得出的结论是,黑子周期25可能是一个弱,低于平均太阳周期,强度与黑子周期24相似。

The dynamic activity of the Sun, governed by its cycle of sunspots -- strongly magnetized regions that are observed on its surface -- modulate our solar system space environment creating space weather. Severe space weather leads to disruptions in satellite operations, telecommunications, electric power grids and air-traffic on polar routes. Forecasting the cycle of sunspots, however, has remained a challenging problem. We use reservoir computing -- a model-free, neural--network based machine-learning technique -- to forecast the upcoming solar cycle, sunspot cycle 25. The standard algorithm forecasts that solar cycle 25 is going to last about ten years, the maxima is going to appear in the year 2024 and the maximum number of sunspots is going to be 113 ($\pm15$). We also develop a novel variation of the standard algorithm whose forecasts for duration and peak timing matches that of the standard algorithm, but whose peak amplitude forecast is 124 ($\pm2$) -- within the upper bound of the standard reservoir computing algorithm. We conclude that sunspot cycle 25 is likely to be a weak, lower than average solar cycle, somewhat similar in strength to sunspot cycle 24.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源