论文标题
在某些相对情况下,欧几里得点的某些相对情况下的曲线点数
Number of points of curves over finite fields in some relative situations from an euclidean point of vue
论文作者
论文摘要
我们以某些相对情况的精神从欧几里得角度的先前论文精神上研究了在某些相对情况下,平滑射击曲线的合理点的数量。我们证明了某种相对的脉络边界,这些界限是从Schwarz不等式得出的,对于对角线的某些“相对部分”和Frobenius的图表,在平方曲线的数值曲线的某些欧几里得子空间上,与相交产物的相对产物相反。
We study the number of rational points of smooth projective curves over finite fields in some relative situations in the spirit of a previous paper from an euclidean point of vue. We prove some kinds of relative Weil bounds, derived from Schwarz inequality for some "relative parts" of the diagonal and of the graph of the Frobenius on some euclidean sub-spaces of the numerical space of the squared curve endowed with the opposite of the intersection product.