论文标题

手性狄拉克超导体:二阶和边界拓扑

Chiral Dirac Superconductors: Second-order and Boundary-obstructed Topology

论文作者

Tiwari, Apoorv, Jahin, Ammar, Wang, Yuxuan

论文摘要

我们分析了手性$ {p}+i {p} $超导体的拓扑特性,用于二维金属/半学和四个狄拉克点。已经提出了这样的系统来实现二阶拓扑超导和主机角模式。我们表明,使用额外的$ \ mathsf {c} _4 $旋转对称性,该系统处于固有的高阶拓扑超导体阶段,并且具有较低和更自然的$ \ Mathsf {c} _2 _2 $对称性,是在边界上吸引的拓扑超管制阶段。边界拓扑阻塞受到散装散布间隙的保护。但是,我们表明,尽管存在粒子孔对称性,但众所周知的嵌套威尔森环路通常是未量化的,因此失败了。取而代之的是,我们表明,可以使用替代缺陷分类方法来表征高阶拓扑和边界式拓扑结构,其中有限样本的角落被视为空间填充汉密尔顿的缺陷。我们将“ Dirac+$({p}+i {p})$”建立为二阶拓扑超导性的足够条件。

We analyze the topological properties of a chiral ${p}+i{p}$ superconductor for a two-dimensional metal/semimetal with four Dirac points. Such a system has been proposed to realize second-order topological superconductivity and host corner Majorana modes. We show that with an additional $\mathsf{C}_4$ rotational symmetry, the system is in an intrinsic higher-order topological superconductor phase, and with a lower and more natural $\mathsf{C}_2$ symmetry, is in a boundary-obstructed topological superconductor phase. The boundary topological obstruction is protected by a bulk Wannier gap. However, we show that the well-known nested-Wilson loop is in general unquantized despite the particle-hole symmetry, and thus fails as a topological invariant. Instead, we show that the higher-order topology and boundary-obstructed topology can be characterized using an alternative defect classification approach, in which the corners of a finite sample is treated as a defect of a space-filling Hamiltonian. We establish "Dirac+$({p}+i{p})$" as a sufficient condition for second-order topological superconductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源