论文标题

关于一些假想二次领域的班级组的指数

On the exponents of class groups of some families of imaginary quadratic fields

论文作者

Hoque, Azizul

论文摘要

令$ a \ geq 1 $,$ n> 1 $为奇数。对于给定的Prime $ p $,我们在某些条件下证明了一个假想二次字段的组组$ \ mathbb {q}(\ sqrt {\ sqrt {a^2-4p^n})$具有子组为$ \ $ \ \ \ \ \ m m mathbb {z}/n \ mathbb {Z} $。我们还表明,这个领域的家族具有无限的属性成员,其班级组具有一个子组同构为$ \ Mathbb {z}/n \ mathbb {z} $。此外,我们推断出一些关于某些假想二次场的班级数量的无条件结果。最后,我们提供了一些数值示例来验证我们的结果。

Let $a\geq 1$ and $n>1$ be odd integers. For a given prime $p$, we prove under certain conditions that the class groups of imaginary quadratic fields $\mathbb{Q}(\sqrt{a^2-4p^n})$ have a subgroup isomorphic to $\mathbb{Z}/n\mathbb{Z}$. We also show that this family of fields has infinitely many members with the property that their class groups have a subgroup isomorphic to $\mathbb{Z}/n\mathbb{Z}$. In addition, we deduce some unconditional results concerning the divisibility of the class numbers of certain imaginary quadratic fields. At the end, we provide some numerical examples to verify our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源