论文标题
策略驱动的知识对话系统的神经反应生成
Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems
论文作者
论文摘要
开放域对话系统旨在产生相关,内容丰富且引人入胜的响应。 SEQ2SEQ神经反应生成方法没有明确的机制来控制生成的响应的内容或样式,并且经常导致不知情的话语。在本文中,我们建议使用对话策略以行动计划的形式计划目标响应的内容和样式,其中包括与对话上下文,有针对性的对话行为,主题信息等相关的知识句子。动作计划中的属性是通过自动注释公开释放的局部chat数据集来获得的。我们将神经反应发生器在动作计划中调节,然后在转弯和句子级别上将其视为目标话语。我们还研究了不同的对话政策模型,以预测对话环境的行动计划。通过自动化和人类的评估,我们衡量生成的响应的适当性,并检查一代模型是否确实学会了实现给定的行动计划。我们证明,在句子级别上运行的基本对话策略与转向水平的生成以及没有行动计划的基线模型相比,会产生更好的响应。此外,基本对话策略具有可控性的附加效果。
Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.