论文标题

GP-ETAS:半参数贝叶斯的推断,用于时空流行类型的余震序列模型

GP-ETAS: Semiparametric Bayesian inference for the spatio-temporal Epidemic Type Aftershock Sequence model

论文作者

Molkenthin, Christian, Donner, Christian, Reich, Sebastian, Zöller, Gert, Hainzl, Sebastian, Holschneider, Matthias, Opper, Manfred

论文摘要

时空流行类型的余震序列(ETA)模型被广泛用于描述地震发生的自我激发性质。尽管传统推理方法仅提供模型参数的点估计值,但我们的目标是对模型推断进行完整的贝叶斯处理,从而自然地纳入了所得估计值的先验知识和不确定性量化。因此,我们通过高斯工艺(GP)提出了一个高度灵活的非参数表示,用于空间变化的ETA背景强度。结合经典触发功能,这将导致新的模型公式,即GP-ETAS模型。我们通过得出GP-ETAS推理问题的增强形式来启用可牵引和有效的Gibbs采样。这种新颖的抽样方法使我们能够评估在观察到的地震目录中的后验变量,即,空间背景强度和触发函数的参数。两个合成数据集的经验结果表明,GP-ETAS优于标准模型,因此证明了观察到的地震目录的预测能力,包括估计参数的不确定性定量。最后,提出了对意大利L'Aquila地区的案例研究,并于2009年4月6日进行了毁灭性的事件。

The spatio-temporal Epidemic Type Aftershock Sequence (ETAS) model is widely used to describe the self-exciting nature of earthquake occurrences. While traditional inference methods provide only point estimates of the model parameters, we aim at a full Bayesian treatment of model inference, allowing naturally to incorporate prior knowledge and uncertainty quantification of the resulting estimates. Therefore, we introduce a highly flexible, non-parametric representation for the spatially varying ETAS background intensity through a Gaussian process (GP) prior. Combined with classical triggering functions this results in a new model formulation, namely the GP-ETAS model. We enable tractable and efficient Gibbs sampling by deriving an augmented form of the GP-ETAS inference problem. This novel sampling approach allows us to assess the posterior model variables conditioned on observed earthquake catalogues, i.e., the spatial background intensity and the parameters of the triggering function. Empirical results on two synthetic data sets indicate that GP-ETAS outperforms standard models and thus demonstrate the predictive power for observed earthquake catalogues including uncertainty quantification for the estimated parameters. Finally, a case study for the l'Aquila region, Italy, with the devastating event on 6 April 2009, is presented.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源