论文标题
最小化多标签分类的监督
Minimizing Supervision in Multi-label Categorization
论文作者
论文摘要
大多数图像中都存在多类对象。将其视为多类分类是没有道理的。我们将其视为多标签分类问题。在本文中,我们进一步旨在最大程度地减少提供多标签分类监督所需的监督。具体而言,我们研究了一种有效的方法,该方法可以根据边界框或分割掩模将弱定位与每个类别相关联。这样做可以提高多标签分类的准确性。我们采用的方法是一种主动学习之一,即逐步选择一组基于当前模型的样本,对这些样本进行监督,并使用附加的监督样本进行重新训练该模型,然后再次继续选择下一组样本。关键的关注是选择样品集。这样一来,我们提供了一种新颖的见解,没有任何具体措施成功地获得了一致改进的选择标准。因此,我们提供了一个选择标准,该标准通过为各种标准选择顶部K集合来始终如一地改善总体基线标准。使用此标准,我们能够证明我们可以保留超过98%的全面监督性能,而Pascal VOC 2007和2012上的数据集中只有20%的样本(和96%的96%)(使用10%的96%)。此外,我们所提出的方法始终超过所有其他基准数据集和模型组合的基线衡量。
Multiple categories of objects are present in most images. Treating this as a multi-class classification is not justified. We treat this as a multi-label classification problem. In this paper, we further aim to minimize the supervision required for providing supervision in multi-label classification. Specifically, we investigate an effective class of approaches that associate a weak localization with each category either in terms of the bounding box or segmentation mask. Doing so improves the accuracy of multi-label categorization. The approach we adopt is one of active learning, i.e., incrementally selecting a set of samples that need supervision based on the current model, obtaining supervision for these samples, retraining the model with the additional set of supervised samples and proceeding again to select the next set of samples. A crucial concern is the choice of the set of samples. In doing so, we provide a novel insight, and no specific measure succeeds in obtaining a consistently improved selection criterion. We, therefore, provide a selection criterion that consistently improves the overall baseline criterion by choosing the top k set of samples for a varied set of criteria. Using this criterion, we are able to show that we can retain more than 98% of the fully supervised performance with just 20% of samples (and more than 96% using 10%) of the dataset on PASCAL VOC 2007 and 2012. Also, our proposed approach consistently outperforms all other baseline metrics for all benchmark datasets and model combinations.