论文标题

改善了与$ a $ numerical半径相关的不平等现象

Improved inequalities related to the $A$-numerical radius for commutators of operators

论文作者

Feki, Kais

论文摘要

让$ a $为复杂的希尔伯特太空$ \ Mathcal {h} $和$ \ Mathcal {b} _ {a}(\ Mathcal {h})$上的正界线性操作员是所有运营商的子空间。在本文中,我们建立了一些不平等,涉及换向者和抗抗议机在半山地空间中,即是由阳性半芬酸盐形式产生的空间。主要是,除其他不等式外,我们证明,对于$ t,s \ in \ Mathcal {b} _ {a}(\ Mathcal {h})$,我们有\ begin \ begin {align*}ω_a(ts \ p pm st) f_a(s,t)\ big \},\ end {align*}其中$ f_a(x,y)= \ | y \ | _a \ sqrt {ω_a^2(x) - \ frac {\ left | \,\ weled \ | \ | \ frac {x+x+x^{\ sharp_a}}} {2} \ right \ | _a^2- \左\ | \ | \ frac {x-x^{\ sharp_a}}} {2i} \ right \ | | _a^2 \ right |} {2} {2}} {2}}}}。$$ $ a $ a $ a $ numerical半径和$ a $ a $ a-hilbert太空运营商的$ a $ a-numerical半径和$ x^{\ sharp_a} $表示$ x^{$ x^{\ a sharp_a} $表示,$ a $ a $ a $ x $ x $ x $。

Let $A$ be a positive bounded linear operator on a complex Hilbert space $\mathcal{H}$ and $\mathcal{B}_{A}(\mathcal{H})$ be the subspace of all operators which admit $A$-adjoints operators. In this paper, we establish some inequalities involving the commutator and the anticommutator of operators in semi-Hilbert spaces, i.e. spaces generated by positive semidefinite sesquilinear forms. Mainly, among other inequalities, we prove that for $T, S\in\mathcal{B}_{A}(\mathcal{H})$ we have \begin{align*} ω_A(TS \pm ST) \leq 2\sqrt{2}\min\Big\{f_A(T,S), f_A(S,T) \Big\}, \end{align*} where $$f_A(X,Y)=\|Y\|_A\sqrt{ω_A^2(X)-\frac{\left|\,\left\|\frac{X+X^{\sharp_A}}{2}\right\|_A^2-\left\|\frac{X-X^{\sharp_A}}{2i}\right\|_A^2\right|}{2}}.$$ Here $ω_A(\cdot)$ and $\|\cdot\|_A$ are the $A$-numerical radius and the $A$-operator seminorm of semi-Hilbert space operators, respectively and $X^{\sharp_A}$ denotes a distinguished $A$-adjoint operator of $X$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源