论文标题
在各向同性半无限制指示灯上的边缘等离子体 - 果龙
Edge plasmon-polaritons on isotropic semi-infinite conducting sheets
论文作者
论文摘要
从时间谐波古典麦克斯韦方程的三维边界值问题,我们得出了表面波的分散关系,边缘等离子体 - 波利顿(EP),它位于附近,并沿着平面,半企业板的直边延伸,并具有空间均匀的均匀的标量,标量的电导率。该薄片位于均匀和各向同性的培养基中;并用作某些二维(2D)导电材料(例如掺杂的单层石墨烯)的模型。我们为与纸板平面的电场形成了一个积分方程的均匀系统。通过Wiener-HOPF方法,我们将此系统转换为真实线上的耦合功能方程,用于表面坐标中正态与边缘的傅立叶变换,并准确求解这些方程。派生的EP分散关系平稳地连接了两个制度:低频制度,其中EP波数$ Q $可以与环境介质的传播常数($ k_0 $)相提并论;以及$ | q | \ gg | k_0 | $的非命令频率制度。我们的分析表明,两种类型的2D表面等离子体 - 孔子在远离边缘的纸上。我们将形式主义扩展到了两个共面床单的几何形状。
From a three-dimensional boundary value problem for the time harmonic classical Maxwell equations, we derive the dispersion relation for a surface wave, the edge plasmon-polariton (EP), that is localized near and propagates along the straight edge of a planar, semi-infinite sheet with a spatially homogeneous, scalar conductivity. The sheet lies in a uniform and isotropic medium; and serves as a model for some two-dimensional (2D) conducting materials such as the doped monolayer graphene. We formulate a homogeneous system of integral equations for the electric field tangential to the plane of the sheet. By the Wiener-Hopf method, we convert this system to coupled functional equations on the real line for the Fourier transforms of the fields in the surface coordinate normal to the edge, and solve these equations exactly. The derived EP dispersion relation smoothly connects two regimes: a low-frequency regime, where the EP wave number, $q$, can be comparable to the propagation constant, $k_0$, of the ambient medium; and the nonretarded frequency regime in which $|q|\gg |k_0|$. Our analysis indicates two types of 2D surface plasmon-polaritons on the sheet away from the edge. We extend the formalism to the geometry of two coplanar sheets.