论文标题
洛伦兹对称性违规的标量casimir效应的一种非扰动方法
A non-perturbative approach to the scalar Casimir effect with Lorentz symmetry violation
论文作者
论文摘要
我们在存在巨大的真实标量场的情况下,确定了洛伦兹不变性违规在真空能量和两个平行板之间的应力和应力。我们用代表恒定背景的对称张量$ h^{\,μν} $来参数lorentz-Violation。通过绿色的函数方法,我们获得了全局的Casimir能量,即板块之间的Casimir力和封闭的分析形式的能量密度,而无需诉诸扰动方法。关于压力,我们发现$ \ MATHCAL {f} _C(l)= \ MATHCAL {f} _0(\ tilde {l})/\ sqrt { - {\ rm det} \,表达式和$ \ tilde {l} $是板块分离的$ h^{\,μν} $ formal for plates的组件,$ \ tilde {l} = l/\ sqrt {-h sqrt {-H^{nn}}} $。我们还分析了包括有限温度校正的Casimir应力。还讨论了Casimir能量密度的局部行为。
We determine the effect of Lorentz invariance violation in the vacuum energy and stress between two parallel plates separated by a distance $L$, in the presence of a massive real scalar field. We parametrize the Lorentz-violation in terms of a symmetric tensor $h^{\,μν}$ that represents a constant background. Through the Green's function method, we obtain the global Casimir energy, the Casimir force between the plates and the energy density in a closed analytical form without resorting to perturbative methods. With regards to the pressure, we find that $\mathcal{F}_c(L)=\mathcal{F}_0(\tilde{L})/\sqrt{-{\rm det}\, h^{\,μν}}$, where $\mathcal{F}_0$ is the Lorentz-invariant expression, and $\tilde{L}$ is the plate separation rescaled by the component of $h^{\,μν}$ normal to the plates, $\tilde{L}=L/\sqrt{-h^{nn}}$. We also analyze the Casimir stress including finite-temperature corrections. The local behavior of the Casimir energy density is also discussed.