论文标题

在随机连接模型下,在货车中与路边的两跳连通性

Two-Hop Connectivity to the Roadside in a VANET Under the Random Connection Model

论文作者

Kartun-Giles, Alexander P., Koufos, Konstantinos, Lu, Xiao, Niyato, Dusit

论文摘要

在本文中,我们计算了在多跳的一维车辆临时网络(VANET)中,至少有一条两跳路的车辆数量至少有两跳路径(RSU),其他汽车可以用作继电器。成对通道在随机连接模型中经历了雷利褪色,因此存在,其概率是由汽车之间的相互距离或汽车和RSU之间的相互距离的函数给出的。当汽车密度$ρ$倾向于零和无穷大时,我们为与RSU有两跳连接的预期汽车数量提供了精确表达式,并使用$ρ$中的无限振荡动力系列确定其行为,这对于所有交通密度的所有方案都是准确的。我们还使用实际流量数据的快照来证实这些发现的现实情况。最后,讨论了与RSU两跳连接的汽车数量的概率质量函数讨论的正常近似。

In this paper, we compute the expected number of vehicles with at least one two-hop path to a fixed roadside unit (RSU) in a multi-hop, one-dimensional vehicular ad hoc network (VANET) where other cars can act as relays. The pairwise channels experience Rayleigh fading in the random connection model, and so exist, with a probability given by a function of the mutual distance between the cars, or between the cars and the RSU. We derive exact expressions for the expected number of cars with a two-hop connection to the RSU when the car density $ρ$ tends to zero and infinity, and determine its behaviour using an infinite oscillating power series in $ρ$, which is accurate for all regimes of traffic density. We also corroborate those findings with a realistic scenario, using snapshots of actual traffic data. Finally, a normal approximation is discussed for the probability mass function of the number of cars with a two-hop connection to the RSU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源