论文标题

2D和3D描述符的无约束匹配,以估计6-DOF

Unconstrained Matching of 2D and 3D Descriptors for 6-DOF Pose Estimation

论文作者

Nadeem, Uzair, Bennamoun, Mohammed, Togneri, Roberto, Sohel, Ferdous

论文摘要

本文提出了一个新颖的概念,可以直接匹配从2D图像中提取的特征描述符,并与从3D点云中提取的特征描述符提取。我们使用此概念将图像直接定位在3D点云中。我们生成一个匹配2D和3D点的数据集及其相应的功能描述符,该数据集用于学习描述符分类器。为了在测试时间定位图像的姿势,我们从查询图像中提取关键点和特征描述符。然后,使用训练有素的描述符匹配器来匹配图像和点云中的功能。匹配特征的位置用于可靠的姿势估计算法,以预测查询图像的位置和方向。我们对室内和室外场景的建议方法进行了广泛的评估,并具有不同类型的点云,以验证我们方法的可行性。实验结果表明,来自图像和点云的特征描述符的直接匹配不仅是一个可行的想法,而且还可以可靠地用来以任何类型的3D点云以不受限制的方式估计查询摄像机的6-DOF姿势。

This paper proposes a novel concept to directly match feature descriptors extracted from 2D images with feature descriptors extracted from 3D point clouds. We use this concept to directly localize images in a 3D point cloud. We generate a dataset of matching 2D and 3D points and their corresponding feature descriptors, which is used to learn a Descriptor-Matcher classifier. To localize the pose of an image at test time, we extract keypoints and feature descriptors from the query image. The trained Descriptor-Matcher is then used to match the features from the image and the point cloud. The locations of the matched features are used in a robust pose estimation algorithm to predict the location and orientation of the query image. We carried out an extensive evaluation of the proposed method for indoor and outdoor scenarios and with different types of point clouds to verify the feasibility of our approach. Experimental results demonstrate that direct matching of feature descriptors from images and point clouds is not only a viable idea but can also be reliably used to estimate the 6-DOF poses of query cameras in any type of 3D point cloud in an unconstrained manner with high precision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源