论文标题
无功能的乘法拉曼努扬系数
Multiplicative Ramanujan coefficients of null-function
论文作者
论文摘要
null功能$ 0(a):= 0 $,$ \ in $ n中的a ramanujan扩展:$ 0(a)= \ sum_ {q = 1}^{\ infty}(\ infty}(1/q)c_q(a) $ 0(a)= \ sum_ {q = 1}^{\ infty}(1/φ(q))c_q(a)$,由Hardy给出($φ:= $ euler的基本函数)。两者在N。A$ G:$ n $ \ rightarrow $ c中均匀地融合(不是绝对),称为Ramanujan系数Abbrev。 r.c.,iff(if and仅IF)$ \ sum_ {q = 1}^{\ infty} g(q)c_q(a)$在$ n in $ n in $ n in $ n;给定$ f:$ n $ \ rightarrow $ c,我们称$ <f> $,其r.c.s的集合,$ f $的ramanujan云。我们在Arxiv中的主要定理:1910.14640,用于Ramanujan扩展和有限的Euler产品,这意味着对乘以$ 0 $的乘法Ramanujan系数进行了完整的分类。 Ramanujan的$ g_r(q):= 1/q $是普通算术函数$ g $,即用$ g(p)\ neq 1 $乘坐所有Primes $ p $的乘法;虽然Hardy的$ g_h(q):= 1/φ(q)$是一个零星的$ g $,即乘法,$ g(p)= 1 $对于有限的$ p $,但没有$ p $ a $ g(p^k)= 1 $ in Integers $ k \ ge 0 $ k \ ge ge 0 $ $ k \ ge 0 $ g_ $ g_ $ g_ $ $ g_ $ $ $ $ $ $ $ $ $ $ $ p = fff $ $ p = fff $ $ $ p) $ g:$ n $ \ rightarrow $ c乘法,使得所有$ g(p^k)= 1 $,所有$ k \ ge 0 $的prime $ p $被定义为异国情调。该定义完成了乘法$ 0- $ RAMANUJAN系数的案例。异国情调的是$ 0- $ Cloud(即$ <0> $)中的一种新现象:外来的Ramanujan系数代表$ 0 $仅带有融合假设。除了融合假说外,不奇特的$ \ sum_ {q = 1}^{\ infty} g(q)g(q)= 0 $(q)= 0 $ for normal $ g \ in <0> $ in <0> $,而sporadic $ g \ in <0> $ in <0> $ in <0> $ in <0> $ nied $ sum sum \ sum _ sum _ {q,q,q,q,q,p(g)q(q)= 1} q(q)(q)(q) $ p(g):= $所有$ p $制造$ g(p)= 1 $的产品。我们给出了许多R.C.S $ G \ in <0> $的例子;我们还证明,绝对收敛的<0> $中唯一的$ g \是异国情调的$。实际上,这些概括到弱异国情调,不一定是乘法。
The null-function $0(a):=0$, $\forall a\in $N, has Ramanujan expansions: $0(a)=\sum_{q=1}^{\infty}(1/q)c_q(a)$ (where $c_q(a):=$ Ramanujan sum), given by Ramanujan, and $0(a)=\sum_{q=1}^{\infty}(1/φ(q))c_q(a)$, given by Hardy ($φ:=$ Euler's totient function). Both converge pointwise (not absolutely) in N. A $G:$N $\rightarrow $C is called a Ramanujan coefficient, abbrev. R.c., iff (if and only if) $\sum_{q=1}^{\infty}G(q)c_q(a)$ converges in all $a\in $N; given $F:$N $\rightarrow $C, we call $<F>$, the set of its R.c.s, the Ramanujan cloud of $F$. Our Main Theorem in arxiv:1910.14640, for Ramanujan expansions and finite Euler products, implies a complete Classification for multiplicative Ramanujan coefficients of $0$. Ramanujan's $G_R(q):=1/q$ is a normal arithmetic function $G$, i.e., multiplicative with $G(p)\neq 1$ on all primes $p$; while Hardy's $G_H(q):=1/φ(q)$ is a sporadic $G$, namely multiplicative, $G(p)=1$ for a finite set of $p$, but there's no $p$ with $G(p^K)=1$ on all integers $K\ge 0$ (Hardy's has $G_H(p)=1$ iff $p=2$). The $G:$N $\rightarrow $C multiplicative, such that there's at least a prime $p$ with $G(p^K)=1$, on all $K\ge 0$, are defined to be exotic. This definition completes the cases for multiplicative $0-$Ramanujan coefficients. The exotic ones are a kind of new phenomenon in the $0-$cloud (i.e., $<0>$): exotic Ramanujan coefficients represent $0$ only with a convergence hypothesis. The not exotic, apart from the convergence hypothesis, require in addition $\sum_{q=1}^{\infty}G(q)μ(q)=0$ for normal $G\in <0>$, while sporadic $G\in <0>$ need $\sum_{(q,P(G))=1}G(q)μ(q)=0$, $P(G):=$product of all $p$ making $G(p)=1$. We give many examples of R.c.s $G\in <0>$; we also prove that the only $G\in <0>$ with absolute convergence are the exotic ones; actually, these generalize to the weakly exotic, not necessarily multiplicative.