论文标题
通过隐藏的马尔可夫模型改善量子读数
Improving Qubit Readout with Hidden Markov Models
论文作者
论文摘要
我们通过隐藏的马尔可夫模型(HMM)在量子读数中演示了模式识别算法的应用。该方案提供了一种状态轨迹轨迹方法,能够检测量子状态转换,并使与多元高斯(MVG)或支持向量机(SVM)方案相比,具有更高的起始状态分配保真度具有更高的起始状态分配保真度。因此,该方法还消除了当前方案中的量子依赖性读数时间优化要求。使用HMM状态歧视者,我们估计忠诚度达到理想限制。无监督的学习可访问过渡矩阵,先验和智商分布,从而提供了一个工具箱,用于在强烈的投射读数过程中研究量子状态动力学。
We demonstrate the application of pattern recognition algorithms via hidden Markov models (HMM) for qubit readout. This scheme provides a state-path trajectory approach capable of detecting qubit state transitions and makes for a robust classification scheme with higher starting state assignment fidelity than when compared to a multivariate Gaussian (MVG) or a support vector machine (SVM) scheme. Therefore, the method also eliminates the qubit-dependent readout time optimization requirement in current schemes. Using a HMM state discriminator we estimate fidelities reaching the ideal limit. Unsupervised learning gives access to transition matrix, priors, and IQ distributions, providing a toolbox for studying qubit state dynamics during strong projective readout.