论文标题
极端水波的数学方面
Mathematical Aspects of Extreme Water Waves
论文作者
论文摘要
该论文涉及流体动力实验室波盆地确定性怪胎波产生的一些理论方面。我们采用空间非线性schrödinger方程作为数学模型,以描述波数据包包膜的变形,同时传播下游。我们广泛研究了描述模量不稳定的精确解决方案家族,称为Akhmedieev-Eleonski \uı-uı-kulagin呼吸。它们与Kuznetsov-Ma的呼吸器和经花生溶液一起属于一类称为“ solitons在非趋势背景”的解决方案。我们使用位移相位振幅表示的变分公式提出动力学。从孤子的相应物理波场来看,我们观察到同时出现消失的振幅,相奇异性,波前脱位的线性现象,而这些现象是chu-mei商的无限性。在荷兰海事研究所的高速波盆地进行的实验结果与预测的理论模型具有显着的定性一致性,包括振幅增加,相位奇异性和保存波数据包频率。进一步的检查表明了进化方程的某些局限性,因为它在整个下游传播中保持了波浪信号和波谱中的对称性,而不是表现出不对称的波结构和频率降档现象。
This thesis deals with some theoretical aspects of deterministic freak wave generation in the wave basin of a hydrodynamic laboratory. We adopt the spatial nonlinear Schrödinger equation as a mathematical model to describe the deformation of the wave packet envelope while propagating downstream. We study extensively a family of exact solutions describing modulational instability, known as the Akhmediev-Eleonski\uı-Kulagin breather. Together with the Kuznetsov-Ma breather and Peregrine solution, they belong to a class of solutions called ''solitons on a non-vanishing background''. We present the dynamics using the variational formulation of the displaced phase-amplitude representation. From the corresponding physical wave field of the soliton, we observe that the linear phenomena of vanishing amplitude, phase singularity, wavefront dislocation occur simultaneously and a necessary condition for these is the unboundedness of the Chu-Mei quotient. The experimental results conducted at the high-speed wave basin of Maritime Research Institute Netherlands show a remarkable qualitative agreement with the predicted theoretical model, including an amplitude increase, phase singularity, and the preservation of wave packet frequencies. A further examination suggests some limitations of the evolution equation since it maintains a symmetry in the wave signal and wave spectrum throughout downstream propagation instead of exhibiting an asymmetric wave structure and the frequency downshift phenomenon.