论文标题
Fisher信息几何形状的混合高斯状态的复杂性
Complexity of mixed Gaussian states from Fisher information geometry
论文作者
论文摘要
我们在任何数量的尺寸中研究了混合的玻色石高斯状态的电路复杂性。通过为协方差矩阵采用Fisher信息几何形状,我们考虑了将两个状态与暂时消失的最佳电路连接起来的,其长度与复杂性相结合,可以通过最佳电路从参考状态创建目标状态。讨论了量化频谱复杂性和基础复杂性的明确建议。还分析了混合状态的纯化。在圆或无限线上的谐波链的特殊情况下,我们报告了热状态和密度降低的数值结果。
We study the circuit complexity for mixed bosonic Gaussian states in harmonic lattices in any number of dimensions. By employing the Fisher information geometry for the covariance matrices, we consider the optimal circuit connecting two states with vanishing first moments, whose length is identified with the complexity to create a target state from a reference state through the optimal circuit. Explicit proposals to quantify the spectrum complexity and the basis complexity are discussed. The purification of the mixed states is also analysed. In the special case of harmonic chains on the circle or on the infinite line, we report numerical results for thermal states and reduced density matrices.