论文标题
彩虹图恩数量的偶数循环,重复的模式和周期的爆炸
Rainbow Turán number of even cycles, repeated patterns and blow-ups of cycles
论文作者
论文摘要
图$ h $的RainbowTurán编号$ \ mathrm {ex}^*(n,h)$是适当边缘色的$ n $ vertex图中最大可能的边数,没有彩虹子级同构为$ h $。我们证明,对于任何整数$ k \ geq 2 $,$ \ mathrm {ex}^*(n,c_ {2k})= o(n^{1+1/k})$。这很紧,并建立了Keevash,Mubayi,Sudakov和Verstraëte的猜想。我们使用相同的方法来证明各种主题中的其他一些猜想。首先,我们证明存在一个常数的$ c $,因此任何适当的边缘色$ n $ vertex图具有超过$ cn(\ log n)^4 $边缘包含彩虹循环。众所周知,存在$ω(n \ log n)$边缘的正确边缘$ n $ vertex图,不包含任何彩虹循环。其次,我们表明,在$ o(n^{\ frac {r} {r-1} {r-1} \ cdot \ frac \ frac {k-1} {k-1}}})$的任何适当的边缘色中,存在$ r $ r $ colour-iSomorphic,pairour-isomorphic,paighwise pertex-disex-joint copies $ c__} $。这证明了强烈的猜想是Conlon和Tyomkyn的猜想,以及Xu,Zhang,Jing和GE提出的Strenghtenten版本。此外,我们通过证明存在常数的$ c = c(r)$,以使任何$ n $ vertex图具有超过$ cn^{2-1/r}(\ log n)^{7/r} $ edges包含一个均匀周期的$ r $ blowup。最后,我们证明了$ c_ {2k} $的$ r $ -blowupturán数字$ o(n^{2- \ frac {1} {r} {r}+\ frac {1} {k+r-1}+r-1}+o(1)})
The rainbow Turán number $\mathrm{ex}^*(n,H)$ of a graph $H$ is the maximum possible number of edges in a properly edge-coloured $n$-vertex graph with no rainbow subgraph isomorphic to $H$. We prove that for any integer $k\geq 2$, $\mathrm{ex}^*(n,C_{2k})=O(n^{1+1/k})$. This is tight and establishes a conjecture of Keevash, Mubayi, Sudakov and Verstraëte. We use the same method to prove several other conjectures in various topics. First, we prove that there exists a constant $c$ such that any properly edge-coloured $n$-vertex graph with more than $cn(\log n)^4$ edges contains a rainbow cycle. It is known that there exist properly edge-coloured $n$-vertex graphs with $Ω(n\log n)$ edges which do not contain any rainbow cycle. Secondly, we show that in any proper edge-colouring of $K_n$ with $o(n^{\frac{r}{r-1}\cdot \frac{k-1}{k}})$ colours, there exist $r$ colour-isomorphic, pairwise vertex-disjoint copies of $C_{2k}$. This proves in a strong form a conjecture of Conlon and Tyomkyn, and a strenghtened version proposed by Xu, Zhang, Jing and Ge. Moreover, we answer a question of Jiang and Newman by showing that there exists a constant $c=c(r)$ such that any $n$-vertex graph with more than $cn^{2-1/r}(\log n)^{7/r}$ edges contains the $r$-blowup of an even cycle. Finally, we prove that the $r$-blowup of $C_{2k}$ has Turán number $O(n^{2-\frac{1}{r}+\frac{1}{k+r-1}+o(1)})$, which can be used to disprove an old conjecture of Erd\H os and Simonovits.