论文标题

使用基于高斯过程的马尔可夫链蒙特卡洛来量化模型参数的不确定性:对心脏电生理模型的应用

Quantifying the Uncertainty in Model Parameters Using Gaussian Process-Based Markov Chain Monte Carlo: An Application to Cardiac Electrophysiological Models

论文作者

Dhamala, Jwala, Sapp, John L., Horácek, B. Milan, Wang, Linwei

论文摘要

估计患者特异性模型参数对于个性化建模很重要,尽管稀疏和嘈杂的临床数据可能会引入估计参数值的明显不确定性。如果不量化的话,这种不确定性的重要性来源将导致模型输出的变异性未知,从而阻碍其可靠的采用。然而,概率估计模型参数仍然是一个尚未解决的挑战,因为标准的马尔可夫链蒙特卡洛采样需要重复的模型模拟,这些模型在计算上是不可行的。一个常见的解决方案是用计算效率的替代替代模拟模型以进行更快的采样。但是,通过从参数的确切后概率密度函数(PDF)的近似中进行取样,以取样精度为代价获得效率。在本文中,我们通过将替代建模整合到确切后PDF的大都市(MH)采样中来解决此问题,以提高其接受率。它是通过使用确定性优化的确切后验PDF构建高斯过程(GP)代理来完成的。然后,该有效的替代物用于修改MH抽样中常用的建议分布,以便仅由替代物接受的提案通过确切的后PDF来测试接受/拒绝,从而减少了不太可能候选者的不必要的模型模拟。使用提出的方法的合成和真实数据实验显示,计算效率的增长显着而不会损害准确性。另外,可以从获得的后验分布中获得对组织特性的非识别性和异质性的见解。

Estimation of patient-specific model parameters is important for personalized modeling, although sparse and noisy clinical data can introduce significant uncertainty in the estimated parameter values. This importance source of uncertainty, if left unquantified, will lead to unknown variability in model outputs that hinder their reliable adoptions. Probabilistic estimation model parameters, however, remains an unresolved challenge because standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible. A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling. However, by sampling from an approximation of the exact posterior probability density function (pdf) of the parameters, the efficiency is gained at the expense of sampling accuracy. In this paper, we address this issue by integrating surrogate modeling into Metropolis Hasting (MH) sampling of the exact posterior pdfs to improve its acceptance rate. It is done by first quickly constructing a Gaussian process (GP) surrogate of the exact posterior pdfs using deterministic optimization. This efficient surrogate is then used to modify commonly-used proposal distributions in MH sampling such that only proposals accepted by the surrogate will be tested by the exact posterior pdf for acceptance/rejection, reducing unnecessary model simulations at unlikely candidates. Synthetic and real-data experiments using the presented method show a significant gain in computational efficiency without compromising the accuracy. In addition, insights into the non-identifiability and heterogeneity of tissue properties can be gained from the obtained posterior distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源