论文标题

高斯线性近似,以估计沙普利效应

Gaussian linear approximation for the estimation of the Shapley effects

论文作者

Broto, Baptiste, Bachoc, François, Depecker, Marine, Martinez, Jean-Marc

论文摘要

在本文中,我们介绍了称为“ Shapley Ects”的灵敏度指数的估计。这些灵敏度指数允许处理相关输入变量。 Shapley Ects通常是可以估计的,但是在高斯线性框架中很容易计算。这项工作的目的是在近似的高斯线性框架中使用shapley ects的值作为与非线性模型相对应的真实shapley ects的估计器。首先,我们假设输入变量是具有较小差异的高斯。我们提供了估计的沙普利(Shapley Ects)与真实沙普利(Shapley Ects)的收敛速度。然后,我们关注的是通过非高斯经验平均值给出输入的情况。我们证明,在一些温和的假设下,当经验均值中的术语数量增加时,真正的沙普利(Shapley)教义和高斯线性近似值的估计的沙普利(Shapley)估计的估计的沙普利(Shapley)的差异会收敛到0。我们的理论结果由数值研究支持,表明高斯线性近似值是准确的,可以降低计算的时间符合时间符合时间的符号。

In this paper, we address the estimation of the sensitivity indices called "Shapley eects". These sensitivity indices enable to handle dependent input variables. The Shapley eects are generally dicult to estimate, but they are easily computable in the Gaussian linear framework. The aim of this work is to use the values of the Shapley eects in an approximated Gaussian linear framework as estimators of the true Shapley eects corresponding to a non-linear model. First, we assume that the input variables are Gaussian with small variances. We provide rates of convergence of the estimated Shapley eects to the true Shapley eects. Then, we focus on the case where the inputs are given by an non-Gaussian empirical mean. We prove that, under some mild assumptions, when the number of terms in the empirical mean increases, the dierence between the true Shapley eects and the estimated Shapley eects given by the Gaussian linear approximation converges to 0. Our theoretical results are supported by numerical studies, showing that the Gaussian linear approximation is accurate and enables to decrease the computational time signicantly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源