论文标题
C^2的多项式自动形态的拓扑和几何双曲线标准
Topological and geometric hyperbolicity criteria for polynomial automorphisms of C^2
论文作者
论文摘要
我们证明,对于C^2的耗散性多项式自动形态,均匀的双眼性是不变的。在此过程中,我们还表明,双曲线的足够条件是,马鞍点的局部稳定和不稳定的流形具有统一的几何形状。
We prove that uniform hyperbolicity is invariant under topological conjugacy for dissipative polynomial automorphisms of C^2. Along the way we also show that a sufficient condition for hyperbolicity is that local stable and unstable manifolds of saddle points have uniform geometry.