论文标题
旋转厅纳米振荡器阻尼的巨型电压控制
Giant voltage control of spin Hall nano-oscillator damping
论文作者
论文摘要
自旋霍尔纳米振荡器(SHNOS)是用于微波信号生成和基于振荡器的神经形态的新兴旋转器件,结合了纳米级足迹,快速且超宽的微波频率可调性,CMOS兼容性,CMOS兼容性,以及强大的非线性特性,可提供强大的大型综合和两个互助,并在两个方面相互构化。虽然可以通过磁场和驱动电流调整SHNOS,但两种方法都有利于大型阵列中的单个SHNO控制。在这里,我们演示了带有COFEB/MGO纳米收缩的电控电,其中依赖电压依赖性垂直电磁各向异性,调整了频率,并且由于纳米收缩的几何形状,可以极大地修饰42%巨型42%变化的巨大型号的旋转波局部,这使得有效的domps of 42%变化。结果,可以强烈调整SHNO阈值电流。我们的演示为纳米收缩的shnos增加了关键功能,并为在SHNO链中的单个振荡器和神经形态计算阵列中的单个振荡器的控制铺平了道路。
Spin Hall nano-oscillators (SHNOs) are emerging spintronic devices for microwave signal generation and oscillator based neuromorphic computing combining nano-scale footprint, fast and ultra-wide microwave frequency tunability, CMOS compatibility, and strong non-linear properties providing robust large-scale mutual synchronization in chains and two-dimensional arrays. While SHNOs can be tuned via magnetic fields and the drive current, neither approach is conducive for individual SHNO control in large arrays. Here, we demonstrate electrically gated W/CoFeB/MgO nano-constrictions in which the voltage-dependent perpendicular magnetic anisotropy, tunes the frequency and, thanks to nano-constriction geometry, drastically modifies the spin-wave localization in the constriction region resulting in a giant 42 % variation of the effective damping over four volts. As a consequence, the SHNO threshold current can be strongly tuned. Our demonstration adds key functionality to nano-constriction SHNOs and paves the way for energy-efficient control of individual oscillators in SHNO chains and arrays for neuromorphic computing.