论文标题
动机班级和稳定信封的cotangengent捆绑包的比较
Comparison of motivic Chern classes and stable envelopes for cotangent bundles
论文作者
论文摘要
我们认为,配备有限数量的固定点的代数圆环的动作,我们考虑了一个复杂的光滑投射品种。我们将Białynicki-Birula细胞的动机Chern类与Cotangent Bundle的$ K $ theoretic稳定信封进行了比较。我们证明,在满足的某些几何假设下,例如通过同质空间,这两个概念与标准化一致。
We consider a complex smooth projective variety equipped with an action of an algebraic torus with a finite number of fixed points. We compare the motivic Chern classes of Białynicki-Birula cells with the $K$-theoretic stable envelopes of cotangent bundle. We prove that under certain geometric assumptions satisfied e.g. by homogenous spaces these two notions coincide up to normalization.