论文标题

流出为附近快速发展的潮汐破坏事件AT2019QIZ的光学崛起提供动力

An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz

论文作者

Nicholl, M., Wevers, T., Oates, S. R., Alexander, K. D., Leloudas, G., Onori, F., Jerkstrand, A., Gomez, S., Campana, S., Arcavi, I., Charalampopoulos, P., Gromadzki, M., Ihanec, N., Jonker, P. G., Lawrence, A., Mandel, I., Schulze, S., Short, P., Burke, J., McCully, C., Hiramatsu, D., Howell, D. A., Pellegrino, C., Abbot, H., Anderson, J. P., Berger, E., Blanchard, P. K., Cannizzaro, G., Chen, T. -W., Dennefeld, M., Galbany, L., Gonzalez-Gaitan, S., Hosseinzadeh, G., Inserra, C., Irani, I., Kuin, P., Muller-Bravo, T., Pineda, J., Ross, N. P., Roy, R., Smartt, S. J., Smith, K. W., Tucker, B., Wyrzykowski, L., Young, D. R.

论文摘要

在66 MPC时,AT2019QIZ是迄今为止最接近的光学潮汐破坏事件(TDE),亮度中间位于大部分人群和IPTF16FNL之间。它的接近度允许在最大光线之前非常早期检测和触发多波长和光谱随访。主机银河系的速度分散和适合TDE灯曲线表示黑洞质量$ \ 10^6 $ m $ _ \ odot $,破坏了$ \ 1 $ m $ _ $ _ \ odot $的星星。 Comprehensive UV, optical and X-ray data shows that the early optical emission is dominated by an outflow, with a luminosity evolution $L \propto t^2$, consistent with a photosphere expanding at constant velocity ($\gtrsim 2000$ km s$^{-1}$), and a line-forming region producing initially blueshifted H and He II profiles with $v=3000-10000$ km s $^{ - 1} $。从无线电检测中推断出的速度最快的速度(在K.〜D。〜Alexander等人的即将到来的同伴论文中建模),因此,相同的流出可能导致快速光学上升和无线电发射 - 第一次在TDE中观察到这种连接。光曲线上升开始$ 29 \ pm 2 $ 2 $几天,在最大光线上达到峰值,当光球到达光学光子可以逃脱的半径时达到峰值。然后,光球发生突然的过渡,首先在恒定半径上冷却,然后在恒温下收缩。同时,蓝光从频谱中消失,鲍恩荧光线(N III)变得突出,这意味着远处光子的来源,而X射线灯曲线峰值为$ \ of \ 10^{41} $ erg s $^s $^{ - 1} $。假设这些X射线来自迅速的积聚,则流出的大小和质量与解释该和其他光学TDE中较大的光学与X射线比所需的后处理层是一致的,这可能比碰撞供电的流出模型有利于积聚能力。

At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass $\approx 10^6$ M$_\odot$, disrupting a star of $\approx 1$ M$_\odot$. Comprehensive UV, optical and X-ray data shows that the early optical emission is dominated by an outflow, with a luminosity evolution $L \propto t^2$, consistent with a photosphere expanding at constant velocity ($\gtrsim 2000$ km s$^{-1}$), and a line-forming region producing initially blueshifted H and He II profiles with $v=3000-10000$ km s$^{-1}$. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K.~D.~Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission -- the first time this connection has been observed in a TDE. The light curve rise begins $29 \pm 2$ days before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N III) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at $\approx 10^{41}$ erg s$^{-1}$. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源