论文标题

脾气良好的ZX和ZH Calculi

Well-tempered ZX and ZH Calculi

论文作者

de Beaudrap, Niel

论文摘要

ZX演算是一种数学工具,可以通过操纵图表的图表来表示和分析量子操作,而图表实际上代表张量网络。这些网络的两个节点家族是通过Z旋转或X旋转的通勤,通常称为“绿节点”和“红色节点”。 ZX演算的原始表述部分是由绿色和红色节点形成的代数的特性进行的:值得注意的是,它们形成了双重伴侣 - 但仅是标量因子。结果,某些统一操作的图转换和符号涉及“标量小工具”,表示对正常化因素的贡献。我们为ZX演算提出了重量化的发电机,该发电机精确地形成了双子。结果,不需要标量小工具来表示最常见的统一转换,并且相应的图转换通常更简单。我们还提供了类似的ZH演算版本。我们通过对各种“理想化”重写声音的条件的分析来获得这些结果,并利用ZX和ZH Calculi的现有表现。

The ZX calculus is a mathematical tool to represent and analyse quantum operations by manipulating diagrams which in effect represent tensor networks. Two families of nodes of these networks are ones which commute with either Z rotations or X rotations, usually called "green nodes" and "red nodes" respectively. The original formulation of the ZX calculus was motivated in part by properties of the algebras formed by the green and red nodes: notably, that they form a bialgebra -- but only up to scalar factors. As a consequence, the diagram transformations and notation for certain unitary operations involve "scalar gadgets" which denote contributions to a normalising factor. We present renormalised generators for the ZX calculus, which form a bialgebra precisely. As a result, no scalar gadgets are required to represent the most common unitary transformations, and the corresponding diagram transformations are generally simpler. We also present a similar renormalised version of the ZH calculus. We obtain these results by an analysis of conditions under which various "idealised" rewrites are sound, leveraging the existing presentations of the ZX and ZH calculi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源