论文标题

这对易感感染感染模型的高流行率在网络上淬灭平均场理论

High prevalence regimes in the pair quenched mean-field theory for the susceptible-infected-susceptible model on networks

论文作者

Silva, Diogo H., Rodrigues, Francisco A., Ferreira, Silvio C.

论文摘要

计算成对动力相关性显着提高了平均场理论的准确性,并在研究复杂网络的动态过程中起着重要作用。在这项工作中,我们对淬灭的平均场理论(QMF)进行了非扰动的数值分析,并通过对易感感染感应感染的(SIS)模型在合成和真实网络上通过配对淬灭平均场(PQMF)理论包含动态相关性。我们表明,PQMF在具有不同级别的异质性和程度相关性的合成网络上的标准QMF非常优于标准QMF,当系统不太接近流行性阈值时,提供了极为准确的预测,而QMF理论则与具有程度指数指数的网络的模拟大大偏离了$γ> 2.5 $。真实网络的场景更加复杂,而PQMF的表现显着优于QMF理论。但是,尽管对于大多数研究的网络而言,但在少数情况下,在少数情况下,PQMF与模拟的偏差并不可以忽略不计。我们发现准确性与平均最短路径之间的相关性,而其他基本网络指标似乎与理论准确性不相关。我们的结果表明,PQMF理论的生存能力是研究网络上复发状态流行过程的高流行状态,这是一种高适用性的制度。

Reckoning of pairwise dynamical correlations significantly improves the accuracy of mean-field theories and plays an important role in the investigation of dynamical processes on complex networks. In this work, we perform a nonperturbative numerical analysis of the quenched mean-field theory (QMF) and the inclusion of dynamical correlations by means of the pair quenched mean-field (PQMF) theory for the susceptible-infected-susceptible (SIS) model on synthetic and real networks. We show that the PQMF considerably outperforms the standard QMF on synthetic networks of distinct levels of heterogeneity and degree correlations, providing extremely accurate predictions when the system is not too close to the epidemic threshold while the QMF theory deviates substantially from simulations for networks with a degree exponent $γ>2.5$. The scenario for real networks is more complicated, still with PQMF significantly outperforming the QMF theory. However, despite of high accuracy for most investigated networks, in a few cases PQMF deviations from simulations are not negligible. We found correlations between accuracy and average shortest path while other basic networks metrics seem to be uncorrelated with the theory accuracy. Our results show the viability of the PQMF theory to investigate the high prevalence regimes of recurrent-state epidemic processes on networks, a regime of high applicability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源