论文标题

1D哈伯德模型中的分数 - 量子孔效应(FQHE)

Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models

论文作者

Kleftogiannis, Ioannis, Amanatidis, Ilias

论文摘要

我们研究了一维(1D)多体系统中相互作用颗粒的量子自组织,该系统通过哈伯德链建模,颗粒之间具有短距离相互作用。我们在奇特的分母填充物上显示了具有密度波和聚类顺序的1D状态的出现,这些状态也出现在奇特的分母填充物(FQHE)中,这是一个2D电子系统,该系统是一个具有库仑相互作用的2D电子系统,它们之间的电子和垂直磁场之间的库仑相互作用。在我们的分析中,我们使用一种有效的拓扑度量,应用于系统的真实空间波函数,即描述相互作用粒子聚类的Euler特征。观察到的效果的来源是粒子之间的相互作用施加的空间约束。总体而言,我们证明了一种简单的机制,可以重现FQHE中出现的许多效果,而无需粒子之间的库仑相互作用或外部磁场的应用。

We study the quantum self-organization of interacting particles in one-dimensional(1D) many-body systems, modeled via Hubbard chains with short-range interactions between the particles. We show the emergence of 1D states with density-wave and clustering order, related to topology, at odd denominator fillings that appear also in the fractional-quantum-Hall-effect (FQHE), which is a 2D electronic system with Coulomb interactions between the electrons and a perpendicular magnetic field. For our analysis we use an effective topological measure applied on the real space wavefunction of the system, the Euler characteristic describing the clustering of the interacting particles. The source of the observed effect is the spatial constraints imposed by the interaction between the particles. In overall, we demonstrate a simple mechanism to reproduce many of the effects appearing in the FQHE, without requiring a Coulomb interaction between the particles or the application of an external magnetic field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源