论文标题
Station Rank:瑞士铁路的总动力学
StationRank: Aggregate dynamics of the Swiss railway
论文作者
论文摘要
与计划的开放运输数据相比,实际的可用性和质量提高了实际的开放运输数据,为捕获铁路和其他社会基础设施网络的时空动态提供了新的可能性。描述这种复杂现象的一种方法是在随机过程中。从本质上讲,随机模型是域 - 不合Snostic,此处讨论的算法已成功地用于其他应用程序,包括Google的Pagerank引文排名。我们的关键假设是,火车路线构成类似于文学文本句子的有意义的序列。因此,路线语料库易于与句子语料库相同的分析工具集。通过在瑞士的实验,我们介绍了一种从每天每天的铁路交通数据流中构建马尔可夫链的方法。在正常和扰动条件下的固定分布用于定义有关铁路基础设施的非鲜明,有价值的信息的系统性风险措施。
Increasing availability and quality of actual, as opposed to scheduled, open transport data offers new possibilities for capturing the spatiotemporal dynamics of the railway and other networks of social infrastructure. One way to describe such complex phenomena is in terms of stochastic processes. At its core, a stochastic model is domain-agnostic and algorithms discussed here have been successfully used in other applications, including Google's PageRank citation ranking. Our key assumption is that train routes constitute meaningful sequences analogous to sentences of literary text. A corpus of routes is thus susceptible to the same analytic tool-set as a corpus of sentences. With our experiment in Switzerland, we introduce a method for building Markov Chains from aggregated daily streams of railway traffic data. The stationary distributions under normal and perturbed conditions are used to define systemic risk measures with non-evident,valuable information about railway infrastructure.