论文标题
计算超重空间
Counting overweight spaces
论文作者
论文摘要
令C = 2^aleph0表示连续体的基数,让A,B,K为无限的基数,使用A <b \ leq 2^a。我们表明,恰好存在A尺寸A和重量B的2^B T0空间,直至同构。在这些非塑形空间中,我们追踪 (1)2^b零维,散射,副型,完全正常的空间(如果b = 2^a)极端断开; (2)2^b连接并局部连接的Hausdorff空间; (3)2^b路径连接并局部连接,paracompact,完全正常的空间,规定\ geq c; (4)2^b连接,无处可在局部连接,完全断开,paracompact,完全正常的空间,规定\ geq c; (5)2^b散射,紧凑的T1空间; (6)2^b连接,局部连接,紧凑的T1空间; (7)2^b路径连接和散射,紧凑的T0空间; (8)2^b散射,paracompact p_k空间,每当a^{<k} = a和b^{<k} = b和2^b> 2^a时。
Let c=2^aleph0 denote the cardinality of the continuum and let a,b,k be infinite cardinal numbers with a<b\leq 2^a. We show that there exist precisely 2^b T0-spaces of size a and weight b up to homeomorphism. Among these non-homeomorphic spaces we track down (1) 2^b zero-dimensional, scattered, paracompact, perfectly normal spaces (which are also extremally disconnected in case that b=2^a); (2) 2^b connected and locally connected Hausdorff spaces; (3) 2^b pathwise connected and locally pathwise connected, paracompact, perfectly normal spaces provided that a\geq c; (4) 2^b connected, nowhere locally connected, totally pathwise disconnected, paracompact, perfectly normal spaces provided that a\geq c; (5) 2^b scattered, compact T1-spaces; (6) 2^b connected, locally connected, compact T1-spaces; (7) 2^b pathwise connected and scattered, compact T0-spaces; (8) 2^b scattered, paracompact P_k-spaces whenever a^{<k}=a and b^{<k}=b and 2^b>2^a.