论文标题
知识网络的增长和形式通过动力学好奇心
The growth and form of knowledge networks by kinesthetic curiosity
论文作者
论文摘要
在一生中,我们可能会寻求呼唤,伴侣,技能,娱乐,真理,自我知识,美丽和教育。好奇心的实践可以看作是扩展和开放式的搜索,以搜索有价值的信息,并在相互联系的信息的复杂空间中具有隐藏的身份和位置。尽管它很重要,但好奇心还是对计算模型的挑战,因为好奇心的实践通常在没有特定目标,外部奖励或立即反馈的情况下蓬勃发展。在这里,我们展示了网络科学,统计物理学和哲学如何被整合到一种与特定多样性和感知性 - 症状好奇心的心理分类法相干和扩展的方法中。使用这种跨学科的方法,我们将寻求信息的好奇信息的功能模式提炼为信息空间中的搜索运动。好奇心的动力学模型与基于模型的强化学习的审议预测提供了充满活力的对应物。在此过程中,该模型发掘了新的计算机会,以确定使好奇心感到好奇的原因。
Throughout life, we might seek a calling, companions, skills, entertainment, truth, self-knowledge, beauty, and edification. The practice of curiosity can be viewed as an extended and open-ended search for valuable information with hidden identity and location in a complex space of interconnected information. Despite its importance, curiosity has been challenging to computationally model because the practice of curiosity often flourishes without specific goals, external reward, or immediate feedback. Here, we show how network science, statistical physics, and philosophy can be integrated into an approach that coheres with and expands the psychological taxonomies of specific-diversive and perceptual-epistemic curiosity. Using this interdisciplinary approach, we distill functional modes of curious information seeking as searching movements in information space. The kinesthetic model of curiosity offers a vibrant counterpart to the deliberative predictions of model-based reinforcement learning. In doing so, this model unearths new computational opportunities for identifying what makes curiosity curious.